C 2010 Sundhar Ram Srinivasan Distributed Optimization in Multi-agent Systems: Applications to Distributed Regression
نویسندگان
چکیده
The context for this work is cooperative multi-agent systems (MAS). An agent is an intelligent entity that can measure some aspect of its environment, process information and possibly influence the environment through its action. A cooperative MAS can be defined as a loosely coupled network of agents that interact and cooperate to solve problems that are beyond the individual capabilities or knowledge of each agent. The focus of this thesis is distributed stochastic optimization in multi-agent systems. In distributed optimization, the complete optimization problem is not available at a single location but is distributed among different agents. The distributed optimization problem is additionally stochastic when the information available to each agent is with stochastic errors. Communication constraints, lack of global information about the network topology and the absence of coordinating agents make it infeasible to collect all the information at a single location and then treat it as a centralized optimization problem. Thus, the problem has to be solved using algorithms that are distributed, i.e., different parts of the algorithm are executed at different agents, and local, i.e., each agent uses only information locally available to it and other information it can obtain from its immediate neighbors. In this thesis, we will primarily focus on the specific problem of minimizing a sum of functions over a constraint set, when each component function is known partially (with stochastic errors) to a unique agent. The constraint set is known to all the agents. We propose three distributed and local algorithms, establish asymptotic convergence with diminishing stepsizes and obtain rate of ii convergence results. Stochastic errors, as we will see, arise naturally when the objective function known to an agent has a random variable with unknown statistics. Additionally, stochastic errors also model communication and quantization errors. The problem is motivated by distributed regression in sensor networks and power control in cellular systems. We also discuss an important extension to the above problem. In the extension, the network goal is to minimize a global function of a sum of component functions over a constraint set. Each component function is known to a unique network agent. The global function and the constraint set are known to all the agents. Unlike the previous problem, this problem is not stochastic. However, the objective function in this problem is more general. We propose an algorithm to solve this problem and establish its convergence.
منابع مشابه
A new class of distributed optimization algorithms: application to regression of distributed data
A new class of distributed optimization algorithms: application to regression of distributed data S. Sundhar Ram a , A. Nedić b & V. V. Veeravalli c a Electrical and Computer Engineering Department, University of Illinois, Urbana, IL, 61801, USA b Industrial and Enterprise Systems Engineering Department, University of Illinois, Urbana, IL, 61801, USA c Electrical and Computer Engineering Depart...
متن کاملDistributed Stochastic Subgradient Projection Algorithms for Convex Optimization
We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by using subgradi...
متن کاملOptimization of majority protocol for controlling transactions concurrency in distributed databases by multi-agent systems
In this paper, we propose a new concurrency control algorithm based on multi-agent systems which is an extension of majority protocol. Then, we suggest a clustering approach to get better results in reliability, decreasing message passing and algorithm’s runtime. Here, we consider n different transactions working on non-conflict data items. Considering execution efficiency of some different...
متن کاملDistributed multi-agent Load Frequency Control for a Large-scale Power System Optimized by Grey Wolf Optimizer
This paper aims to design an optimal distributed multi-agent controller for load frequency control and optimal power flow purposes. The controller parameters are optimized using Grey Wolf Optimization (GWO) algorithm. The designed optimal distributed controller is employed for load frequency control in the IEEE 30-bus test system with six generators. The controller of each generator is consider...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009